
PyBox: a Python tool for simulating the kinematics of
Pyroclastic density currents with the box-model approach

Reference and User’s Guide

Giovanni Biagioli, Andrea Bevilacqua,
Tomaso Esposti Ongaro, Mattia de’ Michieli Vitturi

May 9, 2019

This report describes the physical principles, numerical method and implementation
into a Python code of an integral (box) model to simulate the kinematics of pyroclastic
density currents (PDCs) and the PDC invasion maps over a rugged topography.

The kinematic model analyzed here is based on the box model formulation descri-
bed in many previous papers (Huppert and Simpson, 1980; Dade and Huppert, 1995a;
Bonnecaze et al., 1995; Hallworth et al., 1998; Esposti Ongaro et al., 2016). It describes
the propagation of a turbulent particle-laden gravity current, generated by the sudden
release of a homogeneous fluid with suspended particles into a still atmosphere. Inertial
effects are assumed to have a leading role with respect to viscous forces and particle-
particle interactions. Particle sedimentation, which modifies the current inertia during
propagation, is also taken into account.

The procedure to incorporate the effects of the topography on the PDC box model is
based on the energy conoid approach proposed by Neri et al. (2015); Bevilacqua (2016);
Bevilacqua et al. (2017).

In Section 1, we first briefly recall the main characteristics of PDCs, from a physical
and geological point of view basing upon Roche et al. (2013); Dufek et al. (2015).

In Section 2, we derive the differential equations of the box model, for channelized
(Cartesian) and axisymmetric geometries and for particle-laden gravity currents. The
model is based on some simplifying assumptions, already discussed in previous works
Bevilacqua (2016); Esposti Ongaro et al. (2016); Bevilacqua et al. (2017).

Section 3 deals with PDCs hazard assessment in active volcanic regions. In particular,
the distribution of areas exposed to PDCs invasion is discussed and is the focus of the
following subsections 4.5-4.6.

Finally, a new Python-3.x implementation of the box model is described and attached
to these notes. Section 4 contains some discussion on the implementation of the pybox.py
code.

1



1 Phenomenological aspects of PDCs

PDCs are horizontal, gravity-driven currents composed of a hot mixture of volcanic
gas and solid particles, generated by explosive volcanic phenomena. They are typically
generated by the gravitational collapse of lava domes or explosive eruption columns.
PDCs display a coexistence of different flow regimes, ranging from a basal, dense py-
roclastic flow (originating by the progressive sedimentation of granular particles) to an
upper, dilute, turbulent pyroclastic surge (Roche et al., 2013; Esposti Ongaro et al.,
2016).
The following Figure 1 schematically represents the above concepts.

Figure 1: Examples and schematic representations of PDCs different generation mecha-
nisms: lava dome collapse (a, b) and volcanic plume collapse (c,d). Basal dense granular
avalanche and upper pyroclastic surge are labeled F and S, respectively (from Roche et al.
(2013)).

The transition between the two regions with aforementioned regimes can be rough or
progressive and can occur at different heights. Naturally, the concentrated flow at the
current base is strongly influenced by topography (since it is commonly up to a few tens
of meters thick), whereas the upper ash-laden cloud is not. Pyroclastic density currents
can travel over distances up to tens of kilometres, at speed of up to ∼ 200 m · s−1
(Roche et al., 2013). However, dense pyroclastic flows can have relatively low speeds of
∼ 5− 20 m · s−1, as discussed in Roche et al. (2016).

1.1 Density currents and PDC regimes

Gravity currents originate whenever a density difference between two fluids results
in one laterally flowing into the other one. For PDCs, such a density difference arises

2



from the presence of suspended particles and hot gas in the flow, due to the turbulence
generated by the flow. PDCs contain pyroclasts (deriving from magma fragmentation),
whose size varies from the order of microns (ashes) to the order of centimeters (lapilli),
up to meters (blocks).

Typically, density currents dynamics can be described in three distinct phases (Hup-
pert and Simpson, 1980; Roche et al., 2013):

• the slumping phase, in which the gas-particle mixture collapses, intruding into the
ambient fluid: herein, the flow dynamics is controlled by the release conditions and
geometry;

• the inertial phase, during which the flow motion is governed by the balance of
inertia and buoyancy forces;

• the stopping phase, wherein the buoyancy force of the intruding fluid is balanced
by viscous forces and this balance leads to the stop of the current.

The box model presented in this report is suited for the simulation of the intertial
phase of a particle-laden gravity current. In our model, based on numerical experiments
by Esposti Ongaro et al. (2016) we assume that the basal flow has not a controlling role
in the current kinematics.

2 The box model

The model consists of a set of ordinary differential equations, that provide the time
evolution of the PDC front velocity, u(t), together with the current height h(t) and the
solid particle volume fraction εi(t), i = 1, . . . , N , N being the number of particle classes
considered.
We assume the classical dam break configuration, in which a column of fluid instantane-
ously collapses and propagates, under gravity, in a surrounding atmosphere with uniform
density ρatm. Several examples are available in literature and significant cases are provi-
ded by various Computational Fluid Dynamics toolboxes (e.g., Breaking of a dam, in CFD
Direct OpenFOAM v6 User Guide (2018), available at https://cfd.direct/openfoam/
user-guide/v6-damBreak/.) Other authors (Bonnecaze et al., 1995; Dade and Huppert,
1995b, 1996) have considered gravity currents produced by the constant-flux release of
dense suspension from a plane source. Extension of the model presented here to such
a configuration is straightforward and will be implemented in the next version of the
model.

PDCs are driven by their density excess with respect to the surrounding air: the
density of the current ρc is defined as the sum of the density of an interstitial gas, ρg,
and the bulk densities of the pyroclasts carried by the flow, i.e.,

ρc = (1− εtot)ρg +

N∑
i=1

εiρ
s
i , εtot =

N∑
i=1

εi, (1)

3

https://cfd.direct/openfoam/user-guide/v6-damBreak/
https://cfd.direct/openfoam/user-guide/v6-damBreak/


where ρsi , i = 1, . . . , N , is the density of the i−th particle class. We assume ρc > ρatm
and ρatm > ρg, since at PDCs temperatures (typically 300 − 700 ◦C) the density of the
interstitial gas is lower than the atmospheric one (Dufek et al., 2015).
A proper way to express the density contrast between the current and the ambient fluid
is given by the reduced gravity

g′
def
=

ρc − ρatm

ρatm
g,

that can be rewritten as

g′ =

(
1−

∑N
i=1 εi

)
ρg +

∑N
i=1 εiρ

s
i − ρatm

ρatm
g =

ρg − ρatm

ρatm
g +

N∑
i=1

εi
ρsi − ρg

ρatm
g. (2)

That said, we make some additional simplifying hypotheses.
First of all, we assume that the mixture flow regime is incompressible and inviscid. The
hypothesis of inviscid fluid is reasonable since we assume that the dynamics of the cur-
rent is dominated by the balance between inertial and buoyancy forces, as previously
stated: this allow us to neglect viscosity. Note that the assumption of incompressibility
implies that the current volume V (t) remains constant, i.e., V (t) = V0 (see Figure 2).
Neglecting compressibility effects is acceptable because velocity is much lower than the
speed of sound (Esposti Ongaro et al., 2016).
Moreover, we assume that, within the current, the vertical mixing, due to turbulence,
produces a vertically uniform distribution of particles. The particles are assumed to se-
diment out of the current at a rate proportional to their (constant) terminal (or settling)
velocity ws

i , i = 1, . . . , N . Once deposited, they cannot be re-entrained by the flow.
Finally, surface effects of the ambient fluid are neglected.

h(t)

l(t)l0 l1 l2 l3

t3

t2

t1

t0

Figure 2: Evolution of channelized currents through a series of equal-area rectangles,
according to the model (hence the name “box model”).

4



Under these hypotheses, the box model for particle-laden gravity currents states that
the velocity of the current front is related to the average depth of the current by the von
Kármán equation for density currents (Benjamin, 1968; Huppert and Simpson, 1980;
Dade and Huppert, 1995a; Bonnecaze et al., 1995; Hallworth et al., 1998; Bevilacqua,
2016)

u = Fr
√
g′h, (3)

where Fr is the Froude number, a dimensionless number expressing the ratio between
inertial and buoyancy forces.

Nevertheless, since (3) is a single equation relating the unknown variables u(t) and
h(t), we have to specify other equations to completely determine the current kinematics.
So, we assume that particles can settle to the ground and this process changes the solid
particle fractions εi(t), i = 1, . . . , N . In particular, the rate of the i−th particulate class
volume loss is due to sedimentation over the current base surface B, i.e.,

d
dt

(εiV0) = −ws
i εiB, i = 1, . . . , N,

which reduces to
dεi
dt

= −ws
i εi

B

V0
= −w

s
i εi
h

, i = 1, . . . , N.

Cartesian currents. Hence, the box model for channelized particle-laden gravity cur-
rents can be written as:

dl
dt

= Fr
√
g′h (4)

lh = l0h0 = V0 (5)
dεi
dt

= −w
s
i εi
h

, i = 1, . . . N, (6)

where l0 and h0 are, respectively, the length and the height of the current before being
released.

Axisymmetric currents. When considering radially spreading currents, Eqns. (4)
and (6) are unaltered (Huppert and Simpson, 1980) whereas the constant-volume condi-
tion is expressed by

ξπl2h = ξπl20h0 = V0,

where ξ is a spreading factor, ξ =
θ

2π
, which allow us to consider currents spreading

within a circular sector of central angle θ, measured in radians (for isotropic currents,
ξ = 1). In such a way, we can describe the propagation of PDCs originating from the
gravitational collapse of a portion of the eruption column (hence an asymmetric collapse).

5



The box model for axisymmetric currents thus reads:

dl
dt

= Fr
√
g′h (7)

l2h = l20h0 =
V0
ξπ

(8)

dεi
dt

= −w
s
i εi
h

, i = 1, . . . N. (9)

2.1 Analytical expression for the maximum current runout

In the case of monodisperse systems, we can determine analytical solutions for both
cartesian and radially spreading currents, assuming the presence of either a buoyant
interstitial gas or the neutrally buoyant interstitial ambient fluid (Neri et al., 2015; Be-
vilacqua, 2016).
In particular, an explicit expression for the maximum flow runout l∞, i.e., the distance
at which ρc = ρatm, is available in the above mentioned cases (Bonnecaze et al., 1995; Es-
posti Ongaro et al., 2016; Bevilacqua, 2019). Note that, when considering monodisperse
systems, from (1) we have that

ρc − ρatm

ρatm
=
ερs + (1− ε)ρg − ρatm

ρatm
= ε

ρs − ρg

ρatm
+
ρg − ρatm

ρatm
= (ε− εcr)

ρs − ρg

ρatm
,

where εcr
def
=

ρatm − ρg

ρs − ρg
. Note that, when the interstitial fluid is the ambient air, εcr = 0.

Hence, the current flow stops when ε = εcr.
The analytical expressions for the maximum runout are summarized below. We use the
notation

g′p
def
=

ρs − ρatm

ρatm
g and g′′p

def
=

ρs − ρg

ρatm
g.

Analytic expressions maximum flow runout
Cartesian current without interstitial buoyant gas

l∞ =

5Fr
(
ε(0)g′pV

3
0

) 1
2

ws
+ l

5
2
0

 2
5

Axisymmetric current without interstitial buoyant gas

l∞ =

8Fr

(
ε(0)g′p

(
V0
ξπ

)3
) 1

2 1

ws
+ l40


1
4

Cartesian current with interstitial buoyant gas

l∞ =

5Fr
(
εcrg

′′
pV

3
0

) 1
2

ws

((
ε(0)

εcr
− 1

) 1
2

− arctan

(
ε(0)

εcr
− 1

) 1
2

)
+ l

5
2
0

 2
5

Axisymmetric current with interstitial buoyant gas

6



l∞ =

8Fr

(
εcrg

′′
p

(
V0
ξπ

)3
) 1

2 1

ws

((
ε(0)

εcr
− 1

) 1
2

− arctan

(
ε(0)

εcr
− 1

) 1
2

)
+ l40


1
4

The box model has been intensively tested against laboratory experiments and multi-
dimensional Eulerian multiphase flow models, able to describe the dynamics of stratified
PDCs, providing fairly accurate results (Roche et al., 2013; Neri et al., 2015; Esposti On-
garo et al., 2016).

3 PDCs invasion maps

A potential use for the box model is represented by the definition of proper hazard
maps, the hazard being the possibility of being reached by a PDC.
Set a vent location, we calculate the maximum flow runout over flat topographies, com-
puted by the box model and then we assess the capability of topographic reliefs to block
the current.

In particular, the invasion areas can be obtained by using the so-called energy-conoid
model (Orsucci, 2014), based on the assumption of non-linear, monotonic decay of flow
kinetic energy with distance (Bevilacqua, 2016).
In more detail, we determine the maximum height hmax of an obstacle the flow can
overcome. Then we compare the kinetic energy of the current front and the potential
energy associated to the obstacle top, i.e.,

1

2
ρc

(
dl
dt

)2

= (ρc − ρatm)ghmax ⇒ hmax =
1

2

ρc

ρc − ρatm

1

g

(
dl
dt

)2

.

In the case of monodisperse mixtures without hot interstitial fluid, we can analytically
solve the equation on the left, for both cartesian and cylindrical currents (Neri et al.,
2015; Bevilacqua, 2016).
For simplicity, we are neglecting returning waves. Moreover, a sea surface, if present, is
considered as a flat topography with no influence on a PDC traveling over (Bevilacqua
et al., 2017).

4 Implementation of the PYroclastic BOX Model in the Py-
thon code pybox.py

The Python routine described in the sequel has been developed at Istituto Nazionale
di Geofisica e Vulcanologia (INGV) - Sezione di Pisa . Its most important characteristics
are summarized below.

4.1 Input parameters

The code requires the following parameters:

7



• dt, that sets the time step at which output of data is stored;1

• l0, h0 and theta0, i.e., the initial current front position, depth and temperature.
Note that, if theta0 is equal to the ambient temperature of 300 K, the interstitial
fluid density is assumed to be the ambient density, while values above it allow us
to take into account the presence of a buoyant interstitial gas (see Section 2);

• eps0, rhos and ds, which are volume fraction, density and dimension for each grain
size. Pyroclasts are assumed to be perfectly spherical, hence their representative
size ds will be their diameter;

• Fr, g and rhoa, that are Froude number, gravitational acceleration value and air
density (at standard conditions of pressure and temperature);

• alpha, the packing fraction, i.e., the volume fraction of solid particles in the deposit;

• flag_coords, by which we can select the geometry (channelized vs. axisymmetric
currents): in particular, we can solve the box model equations in cartesian (Eqns.
(4)-(6)) or cylindrical (Eqns. (7)-(9)) coordinates, simply by setting flag_coords
to values greater or lower or equal than zero, respectively;

• flag_DEM, by which we can choose whether to read a Digital Elevation Model
(DEM, see subsection 4.2) or not. Indeed, as previously said, it is possible to
analyze the behaviour of PDCs both over flat topographies and over topographies
with reliefs and obstacles. We allow either of these cases, depending on the value
of flag_DEM: if flag_DEM is set to False, we consider the flow runout in absence of
topographies, while, if flag_DEM is True, we account for the presence of a complex
topography. In this last case, we have to set other parameters, that are:

– vertical_scale_factor, a scaling factor by which all the elevations registe-
red in the DEM are multiplied. It must be consistent with the other data
units;

– zone_number and zone_letter, that identify the UTM (Universal Transverse
of Mercator) grid zone the volcanic area is in;

– xv, yv, the UTM coordinates of the volcanic vent location;

– rad_res, i.e., a resolution for the generation of a grid along each radial di-
rection, centered on the vent;

– anglemin, anglemax, minimum and maximum angles defining a radial sector
in which to study the collapse of an eruption column;

– differential_topography, that can be set to True or False, depending on
whether we want to consider the current dynamics with respect to elevations
above sea level or differential topographies, or not.

1Indeed, the solver for the numerical solution of the differential system discretizes the equations with
an adaptive time step technique (see subsection 4.3).

8



• r_tol and a_tol, relative and absolute tolerances for the control of the local error
estimates when using Runge-Kutta-Fehlberg method to solve the differential problem
(see subsection 4.3).

4.2 Operations on DEMs

Reading a DEM

As already said, if flag_DEM is set to True, we are provided with a DEM (that is, a
digital representation of the elevation of a given territory) of a volcanic area.
Before proceeding, we want to spend a few words about DEM files. In particular, we
have a DEM in .asc format: it is a text file with the following entries in the header.

1 n c o l s 1900
2 nrows 1502
3 x l l c o r n e r 418015.70
4 y l l c o r n e r 4514318.30
5 c e l l s i z e 10 .00
6 NODATA_value 0

Looking at the rest of the file, it as a matrix of “pixels” (below, also “cells”), each “pixel”
recording an elevation value above sea level. The first two entries of the .asc file hea-
der represent the number of columns and rows of this matrix, whereas xllcorner and
yllcorner indicate the UTM coordinates of the lowermost-leftmost point2 of the topo-
graphic domain. Besides, cellsize specifies the dimension (in meters) of each “pixel”,
while NODATA_value, in our case, establishes the elevation value for the cells at the sea
level.

In the Python code, we define a subroutine read_dem for extracting information from
a DEM in .asc format.
Then we define two vectors xdem and ydem, containing the coordinates of each “pixel”
center, and a matrix zdem with cell elevations. Note that we read the elevation data
from the upper-left component, so, since the UTM coordinates of each cell are based on
the lower-left element ones, we need to flip the entries in each column in the up-down
direction, with Python numpy command flipud.

Writing a DEM

The subroutine write_dem allows us to a create a new file and write to it the above
mentioned entries of a DEM in .asc format.

2Not pixel!

9



Dividing a DEM into sectors

As we will explain later,3 hazard quantification can be improved by dividing the

volcanic area, centered on the vent, in Ns azimuthal sectors of central angle
(

360

Ns

)◦
.

(xdem[0], ydem[0])

(xdem[1], ydem[0])

(xdem[0], ydem[1])

x

y

VENT

ϑ1

ϑ2

ϑ3 ϑ4

(xr,ϑ1 [1], yr,ϑ1 [1])

Figure 3: Radial discretization of the space.

In particular, we can divide each of these Ns radial directions in a certain number of
subintervals of fixed width sr (that is, the input parameter rad_res).
Assigned an angle ϑ, starting from the vent, we construct two vectors, xr,ϑ and yr,ϑ, the
first elements being the vent coordinates and the other ones being given by

x
(i)
r,ϑ = x

(0)
r,ϑ + i · sr cos(ϑ)

y
(i)
r,ϑ = y

(0)
r,ϑ + i · sr sin(ϑ), i = 1, . . . , nrmax ,

where nrmax is the maximum number of grid points in this new system (see Figure 3).
Naturally, it may happen that the nodes such created exceed the limits of the DEM or

3See subsection 4.5.

10



are more than the maximum flow runout away from the vent, in which cases the grid
construction is stopped.
Then, for each point of the new grid, we determine the “pixel” of the initial DEM it is
in. In this way, we can find the elevation z(i)r,ϑ of the i−th node, i = 0, . . . , nrmax .

The procedure just designed is implemented in the Python subroutine dem_section,
in which xr,ϑ, yr,ϑ, zr,ϑ, nrmax and sr are respectively labeled x, y, z, nmax and d. As
we can see from the code, when looking for the “pixel” containing a certain node, we
distinguish between four cases, according to the quadrant the angle ϑ terminates in.

4.3 Numerical integration

The set of equations (4)-(6) (or (7)-(9)) is numerically integrated by using Runge-
Kutta-Fehlberg method (below, also RKF45).

Explicit s−stages Runge-Kutta methods

Let us consider the problem of numerically solving the first order system of Ordinary
Differential Equations (ODEs){

ẏ(t) = f(t,y(t)), t ∈ (t0, tmax]

y(t0) = y0,
(10)

where y(t) ∈ Rm, t ∈ [t0, tmax], and f : R× Rm → Rm.4

Recall that, in the most general form, all the explicit s-stages Runge-Kutta methods
for the numerical solution of the initial value problem (below, IVP) (10) can be written
as (Dormand and Prince, 1980; Atkinson, 1989; Lambert, 1992; Gautschi, 1997)

yn+1 = yn + (∆t)nF(tn,yn, (∆t)n ; f), n = 0, . . . , Nmax − 1, (11)

where, once constructed a discrete mesh {ti}i=0,...,Nmax in the interval [t0, tmax], yn re-
presents an approximation to the values y(tn) of the solution at the grid points, i.e.,
yn ≈ y(tn). Furthermore, (∆t)n is the current time step, that is, tn+1 = tn + (∆t)n, and
F is a function defined as follows:

F(tn,yn, (∆t)n ; f) =
s∑

i=1

γiVi, Vi =

{
f(tn,yn), i = 1,

f
(
tn + αi (∆t)n ,yn + (∆t)n

∑i−1
j=1 βijVj

)
, i > 1.

Coefficients {βij}, {αi} and {γi} completely characterize a Runge-Kutta method and are
arranged in the so-called Butcher tableau

α β

γt

4Here we suppose that all the hypotheses for the local existence and uniqueness of the solution hold.

11



We impose the conditions (Gautschi, 1997)

s∑
i=1

γi = 1 and αi =
i−1∑
j=1

βij , i = 2, . . . , s.

We also recall that an explicit s-stages Runge-Kutta method cannot have order of accu-
racy greater than s.5 Moreover, we remark that a Runge-Kutta method of order s for a
scalar IVP may have order less than s when applied to solve a system of ODEs (Lambert,
1992).

Herein, we do not deal with the stability analysis of explicit Runge-Kutta schemes. It
is worth mentioning that explicit A-stable Runge-Kutta methods do not exist, although
the stability regions become larger, as the order increases (Lambert, 1992).

Embedded Runge-Kutta methods

Since Runge-Kutta methods are one-step, they are particularly suitable for changing
step size, as long as we are provided with an acceptable estimator of the local truncation
error (12), introduced in the single integration step.
This aim can be achieved by taking two s−stages Runge-Kutta methods of orders p and
q, q > p (usually q = p + 1), and applying them simultaneously to the same problem.
Moreover, in order to cut down the computational effort, we impose that the two schemes
share the same function evaluations (i.e., have same coefficients αi, βij).
So, at each step, we can express the two approximations for the solution as

yn+1 = yn + (∆t)n

s∑
i=1

γiVi,

ȳn+1 = yn + (∆t)n

s∑
i=1

γ̄iVi,

and the Butcher tableau can be summarized as

α β

γt

γ̄t

5A numerical scheme for solving IVPs is said to be p−th order accurate if, once defined the local
truncation error τn+1 of (11) as the residual

τn+1 = y(tn+1)− y(tn)− (∆t)n F(tn,y(tn), (∆t)n ; f), n = 0, . . . , Nmax − 1, (12)

p is the largest integer such that τn+1 = O
(
(∆t)p+1

n

)
(Dormand and Prince, 1980; Lambert, 1992;

Brugnano and Trigiante, 1998).
Otherwise said, τn+1 represents the error introduced in the single integration step, in the local hypothesis
yn = y(tn).

12



By definition (see note 9), we have that

τn+1 = y(tn+1)− yn+1 = O
(

(∆t)p+1
n

)
τ̄n+1 = y(tn+1)− ȳn+1 = O

(
(∆t)q+1

n

)
,

hence, by subtracting the two above relationships, we get

τn+1 ≈ ωn+1
def
= ȳn+1 − yn+1 = (∆t)n

s∑
i=1

(γ̄i − γi)Vi
def
= (∆t)n

s∑
i=1

ciVi.

Step control. Now, the idea is the following: if the two numerical solutions are in
close agreement, the approximation yn+1 is accepted, whereas, if their difference exceeds
a specified accuracy, the step size is reduced. In particular, we impose that (Atkinson,
1989)

‖τn+1‖∞ ≤ tola + ‖yn‖∞tolr
def
= εn+1.

In practice, starting from an initial guess (∆t)0, we compute y1, ȳ1 and hence the
estimator ω1 for τ1. Suppose the aforementioned test has not passed, so we have to
reduce (∆t)0 ((∆t)n, for the generic step). How this can be done?
Assume that the local truncation error can be written as

τn+1 = T(tn,y(tn)) (∆t)p+1
n +O

(
(∆t)p+2

n

)
where the function T(t,y(t)) is called the principal error function.
Thus, considering a smaller step size, i.e., (∆t)n → (∆t)new

n = ζ (∆t)n, ζ < 1, we have

τ new
n+1 ≈ T(tn,y(tn))ζp+1 (∆t)p+1

n = ζp+1ωold
n+1

and we force

‖ζp+1ωold
n+1‖∞ ≤ εn+1 ⇒ ζ ≤

(
εn+1

‖ωold
n+1‖∞

) 1
p+1

< 1.

Set a safety factor µ ∈ (0, 1),6 we estimate (∆t)new
n as

(∆t)new
n := (∆t)n = µ

(
εn+1

‖ωold
n+1‖∞

) 1
p+1

(∆t)n

and accept the solution ynew
n+1 (obtained with this new time step) as yn+1. It is recom-

mended to control whether or not the requested accuracy has actually been reached,
anyway.

6We put it since our estimation of the local truncation error is not exact.

13



Once admitted the time step (∆t)n, since ‖ωn+1‖∞ < εn+1, we can try to estimate
(∆t)n+1 as

(∆t)n+1 =

(
εn+1

‖ωn+1‖∞

) 1
p+1

︸ ︷︷ ︸
>1

(∆t)n ,

i.e., the step size is increased, and we repeat, for the current time, the tests above
described for the previous one.

RKF45

As already said, we perform our numerical integrations with RKF45, that embeds
Runge-Kutta formulas of order 4 and 5: it controls the local truncation errors assuming
accuracy of the fourth-order method and taking the steps with the fifth-order accurate
scheme.
RKF45 Butcher tableau, according to one of the Dormand-Prince formulas,7 is shown
below (Dormand and Prince, 1980):8

1

5

1

5

3

10

3

40

9

40

4

5

44

45
−56

15

32

9

8

9

19372

6561
−25360

2187

64448

6561
−212

729

1 −9017

3168
−355

33

46732

5247

49

176
− 5103

18656

1
35

384
0

500

1113

125

192
−2187

6784

11

84

35

384
0

500

1113

125

192
−2187

6784

11

84
0

5179

57600
0

7571

16695

393

640
− 92097

339200

187

2100

1

40

7Dormand-Prince formulas are a class of Runge-Kutta schemes of order 4 and 5, first derived in
Dormand and Prince (1980). Herein, we make use of one of these formulas.

8This scheme is quite similar to the RKF45 method implemented in Python function
scipy.integrate.solve_IVP. Proper modifications with respect to the Butcher tableau here represented
are introduced, in accordance with Shampine (1986).

14



Following the notation from this subsection, we have to apply RKF45 to numerically
solve Eqns. (4)-(6) or (7)-(9), with

f(t,y) =


Fr

√
g′(y2, . . . , yN+1)

V0
y1

−ws,1y2y1
V0
...

−
ws,NyN+1y1

V0


or f(t,y) =



Fr

√
g′(y2, . . . , yN+1)

V0
ξπ

1

y1

−ξπws,1y2y
2
1

V0
...

−
ξπws,NyN+1y

2
1

V0


,

depending on whether flag_coords is greater than zero or not. In the code, we de-
fine proper subroutines for computing these terms and call them fun_cartesian and
fun_cylindrical, respectively.

Python function scipy.integrate.solve_IVP. We solve the box model equations
with the already existing function scipy.integrate.solve_IVP, available in Python-
3.x,9 which makes use of a variant of the Dormand-Prince formulas (Dormand and Prince,
1980), discussed in Shampine (1986).
For the numerical solution of the generic problem (10), the basic syntax is sol = scipy.
integrate.solve_IVP(fun, tspan, y0, method, t_eval, events, rtol, atol),
where fun is the r.h.s. of the system, tspan and y0 are respectively the interval of inte-
gration10 and the initial condition, method indicates the integration scheme (’RK45’,11

in our case), while t_eval specifies the times at which to store the computed solution12

and the event entry allows to stop the integration process if a specific condition occurs.
In our case, the integration process is blocked when the reduced gravity g′ falls below
zero. Finally, tolerances tola and tolr (above referred to as atol and rtol) are set to
a_tol and r_tol values, specified as input by the user.

9Please refer to SciPy v1.2.1 Reference Guide (2019), available at https://docs.scipy.org/doc/
scipy/reference/index.html.

10The maximum run time tmax is estimated as

tmax = − h0

min
i=1,...,N

ws
i

log

(
ρatm − ρg∑N

i=1 ε0,i(ρ
s
i − ρg)

)
or tmax = − h0

min
i=1,...,N

ws
i

log

(∑N
i=1 ε0,iρatm∑N
i=1 ε0,iρ

s
i

)
,

depending on whether a buoyant interstitial gas is present or not, as follows by equating ρc and ρatm

(since, when g′ falls below zero, the flow stops). In order to obtain the estimates above, in the equa-

tions (6), (9) we have replaced the ratios
ws

i

h(t)
with the (lower) quantities

min
i=1,...,N

ws
i

h0
, leading to an

overestimation of the effective tmax.
11’RK45’, that is, RKF45, is employed by default.
12From the discussion on the step control mechanism, we note that the vector of time output may not

have any “regularity”. For example, we could desire the approximated solution on a more refined grid
or on uniform meshes. This can be achieved by setting up a proper t_eval entry. In these cases, more
dense (or, in general, different) output can be produced by interpolation (Shampine, 1986).

15

https://docs.scipy.org/doc/scipy/reference/index.html
https://docs.scipy.org/doc/scipy/reference/index.html


4.4 Subroutines for computing physical quantities

Computing density of a polydisperse mixture

As we can see in the Python code, we enable the possibility of considering polydisperse
mixtures.
In particular, in the subroutine polydisperse_density, we compute the density of the
polydisperse current, according to (1).

Computing reduced gravity of a polydisperse mixture

Similarly, referring to (2), we determine the reduced gravity of the polydisperse mix-
ture by means of the polydisperse_rg subroutine. In the code, we respectively call rg
and phi[i] the quantities

ρg − ρatm

ρatm
and

ρsi − ρg

ρatm
.

Estimating terminal velocities

We determine each particle class terminal velocity with the settling subroutine.
In particular, once denoted the grain-size class diameters by ds,i, i = 1, . . . , N , the
asymptotic, stationary settling velocities are calculated by means of the Newton’s impact
formula (Dellino et al., 2005; Dioguardi et al., 2018)

ws
i =

√
4ds,iρ

s
i

3CDiρg
g, i = 1, . . . , N, (13)

where the gas-particle drag coefficient CDi is defined, as a function of the relative gas-

particle Reynolds number Reri , Reri =
ρgds,iw

s
i

µg
, µg being the interstitial fluid dynamic

viscosity,13 by the following expression

CDi =


24

Reri

(
1 + 0.15 · Re0.687ri

)
if Reri < 1000,

1 otherwise.

We have therefore used the Schiller-Naumann correlation (Crowe et al., 2011), which
accurately describes the drag force acting on a sphere up to Reri ' 1000, whereas, for
Reri ≥ 1000, we have set CDi = 1, according to Woods and Bursik (1991).

13Dynamic viscosity as a function of temperature is computed according to Sutherland’s law for ideal
gases (Sutherland, 1893), which states that

µ(ϑ) =
C1ϑ

3
2

ϑ+ C2
,

ϑ being the absolute temperature of the gas, C1 = 1.458 · 10−6 kg ·
(
m · s ·K

1
2

)−1

, C2 = 110.4 K.

16



As we can see, the computation of settling velocities requires an iterative procedure:
in fact, the Newton’s impact formula (13) must be solved together with the relationship
for the Reynolds number and the correlation between CDi and Reri .
Hence, starting from an initial guess ws

i
(0),14 we determine the corresponding Reynolds

number, which is further used to find settling velocity by (13); a new Reynolds number is
then calculated and the process is continued until the solution converges15 or iterations
exceed a maximum number, be it kmax.

Computing deposits

For each particle class, we can compute the amount of mass loss by sedimentation,
per unit area, per time step, as

mi(t) = ws
i ρ

s
i εi(t)∆t, i = 1, . . . , N,

∆t being the time step.
Thus, for a given time t̄ and the corresponding current front position l(t̄), we determine
the total mass deposited by the PDC in that point as the sum of mi(t), for all i, for all
time t ∈ [t̄, tmax], where tmax is the final run time, as usual.16 Similarly, by keeping i,
we can compute the deposited total mass of the i−th particle class, hence the deposited
mass fraction of that class, at distance l(t̄).
At last, from the previous quantities, we deduce the thickness profile of the i−th class
deposited layer as the ratio of the deposited total mass of that class to the i−th class
solid density (multiplied by the packing fraction, above referred to as alpha, see 4.1).
In the code, the vectorm is called deposit, whereas the other quantities above introduced
are named totalmass, mass, fract and thick, respectively.

4.5 Writing invasion maps

Before building invasion maps, we express hmax in terms of l: starting from the initial
front position l0, we thus determine the value of hmax corresponding to all the possible
integer current lengths up to the maximum flow runout.
For this purpose, in the code we construct a proper vector named hmax_of_l, in which
the evolution of hmax as a (discrete) function of l is recorded.

With a view to define invasion maps, we take each “pixel” of the original DEM and
build a new DEM, in which “pixels” do not register elevation data but binary values, 1
or 0, depending on whether the cell has been invaded or not by the current.

14In the code, the initial guess is provided by the Stokes free-fall velocity formula, i.e.,

ws
i =

ds,iρ
s
i

18µg
g,

which has remarkable experimental confirmations within the regime Reri < 1.
15We mean that the difference between two consecutive iterates is within a tol tolerance.
16This choice is due to the fact that, before t = t̄, the current has not yet arrived to the position l(t̄).

17



Energy-conoid model: method 1

A first, simple way to construct invasion maps is described below.
We set a vent location, then we compute the distance dist between the vent and each
point (xdem[i], ydem[j]) of the original DEM. So, we deduce the value of hmax corre-
sponding to the nearest integer to dist and compare it with the elevation of the cell; we
also compare dist with the maximum flow runout. If dist exceeds the maximum runout
or the “pixel” elevation is greater than hmax, that cell is assumed not to be invaded.

Energy-conoid model: method 2

Nevertheless, the approach above described may lead to unphysical invasion regions
in the lee of topographical barriers (see Fig. 4(a)).
For this reason, in order to improve hazard assessment, in the case of radially spreading
currents, we can divide the 360-azimuth volcanic area, centered on the vent, in a certain
number of thin circular sectors, be it Ns (typically, Ns = 360, see subsection 4.2), and
compute the energy-conoid solution along all the Ns sectors.

Step 1. By using the function dem_section, defined in subsection 4.2, for each angle
ϑ we determine the elevation of the grid points along the direction specified by ϑ. Then,
we check if their elevation is greater than the value of hmax relative to the closest integer
to the distance from the vent. As soon as this condition is satisfied, the flow is stopped
in that direction and the maximum traveled distance is stored.

Step 2. Once done this, we compute the distance dist between the vent and each point
(xdem[i], ydem[j]) of the original DEM. Then, we determine which direction (starting
from the vent) the point is in, hence the angle corresponding to this direction.

Step 3. Since we consider currents spreading within a circular sector of central angle
θ, we take every DEM point lying in this sector and, if its distance from the vent is lower
than the maximum runout in the corresponding direction (as determined above), the cell
containing the point is assumed to be invaded.
It is worth noting that, for both the approaches, the model does not allow a partial block
of the current: a cell cannot be partially invaded.

The difference between these two approaches is shown in Figure 4: under the same
initial conditions, the invasion maps obtained via energy-conoid method 1 (a) and energy-
conoid method 2 (b) are extremely dissimilar.

Currents spreading on slopes

When investigating the current flow on complex topographies, we have to take into
account that the flow may start from positive elevation or encounter upward slopes after

18



downward slopes.17 In this case, enabled by setting differential_topography input
parameter to True, it is reasonable to compare hmax at a given distance from the vent not
with the corresponding topographic elevation but with the difference in level experienced
by the current between the previous and the present sampled positions.
Figure 5 compares a PDC propagation in the Mt. Vesuvius volcanic region (Italy),
with differential_topography = True (a) and differential_topography = False
(b). Note that in the first case the invaded area is greater: this is due to the fact that,
in proximity to the vent, the hmax required to completely stop the current is higher than
in the second case.

4.6 Visualizing invasion maps

Finally, we included a plotting tool in the code.18

In particular, after having found longitude and latitude coordinates of the DEM limits
and the vent via Python module utm, we download the map of the corresponding zone
from the Google Maps Static API. The Maps Static API service returns the map as an
image we can display. Then, using salem module,19 we can reconstruct on the image
such obtained the grid of the original DEM and hence add and plot our georeferenced
data about the invasion.
Results of this process are shown in Figures 4 and 5, where each pixel of the original DEM
(easily distinguishable from the rest of the region) is colored blue or yellow, depending
on whether it is invaded or not. Moreover, the vent is marked as a red spot on the map.

17In calderas, where the mean topographic slope is about zero, we can make use of the procedure just
described.

18Although both the previous approaches were present in the original version of the code, the first one
has been removed, since we actually visualize invasion maps defined only by energy-conoid method 2.

19See https://salem.readthedocs.io/en/v0.2.3/.

19

https://salem.readthedocs.io/en/v0.2.3/


(a)

(b)

Figure 4: Comparison between the two approaches, outlined in subsection 4.5, to obtain
invasion maps, with regard to the numerical simulation of a PDC propagation at Campi
Flegrei Caldera, Italy. In the second case, some topographical reliefs are able to completely
shield the rear zones against the current.

20



(a)

(b)

Figure 5: Comparison of the invasion maps achieved with regard to the numerical simu-
lation of a PDC propagation at Mt. Vesuvius area (Italy), by using the two boolean values
allowable for differential_topography. Note the differences near the vent.

21



References

Atkinson, K. E. (1989). An Introduction to Numerical Analysis. John Wiley and Sons,
2nd edition.

Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid
Mechanics, 31(2):209–248.

Bevilacqua, A. (2016). Doubly stochastic models for volcanic hazard assessment at Campi
Flegrei caldera. 21:227.

Bevilacqua, A. (2019). Notes on the analytic solution of box model equations for gravity-
driven particle currents with constant volume. Technical report.

Bevilacqua, A., Neri, A., Bisson, M., Esposti Ongaro, T., Flandoli, F., Isaia, R., Rosi, M.,
and Vitale, S. (2017). The Effects of Vent Location, Event Scale, and Time Forecasts on
Pyroclastic Density Current Hazard Maps at Campi Flegrei Caldera (Italy). Frontiers
in Earth Science, 5:1–16.

Bonnecaze, R. T., Hallworth, M. A., Huppert, H. E., and Lister, J. R. (1995). Axisym-
metric particle-driven gravity currents. Journal of Fluid Mechanics, 294:93–121.

Brugnano, L. and Trigiante, D. (1998). Solving Differential Problems by Multistep Initial
and Boundary Value Methods. Gordon and Breach Science Publishers.

Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M., and Tsuji, Y. (2011). Multiphase
Flows With Droplets and Particles. CRC Press, 2nd edition.

Dade, W. B. and Huppert, H. E. (1995a). A box model for non-entraining, suspension-
driven gravity surges on horizontal surfaces. Sedimentology, 42(3):453–470.

Dade, W. B. and Huppert, H. E. (1995b). Runout and fine-sediment deposits of axisym-
metric turbidity currents. Journal of Geophysical Research, 100:18597–18609.

Dade, W. B. and Huppert, H. E. (1996). Emplacement of the Taupo ignimbrite by a
dilute turbulent flow. Nature, 381(6582):509–512.

Dellino, P., Mele, D., Bonasia, R., Braia, G., La Volpe, L., and Sulpizio, R. (2005). The
analysis of the influence of pumice shape on its terminal velocity. Geophysical Research
Letters, 32(21).

Dioguardi, F., Mele, D., and Dellino, P. (2018). A New One-Equation Model of Fluid
Drag for Irregularly Shaped Particles Valid Over a Wide Range of Reynolds Number.
Journal of Geophysical Research: Solid Earth, 123(1):144–156.

Dormand, J. R. and Prince, P. J. (1980). A family of embedded Runge-Kutta formulae.
Journal of Computational and Applied Mathematics, 6(1):19–26.

22



Dufek, J., Esposti Ongaro, T., and Roche, O. (2015). Chapter 35 - Pyroclastic Den-
sity Currents: Processes and Models. In Sigurdsson, H., editor, The Encyclopedia of
Volcanoes (Second Edition), pages 617–629. Academic Press, 2nd edition.

Esposti Ongaro, T., Orsucci, S., and Cornolti, F. (2016). A fast, calibrated model
for pyroclastic density currents kinematics and hazard. Journal of Volcanology and
Geothermal Research, 327:257–272.

Gautschi, W. (1997). Numerical Analysis: An Introduction. Birkhäuser.

Hallworth, M. A., Hogg, A. J., and Huppert, H. E. (1998). Effects of external flow on
compositional and particle gravity currents. Journal of Fluid Mechanics, 359:109–142.

Huppert, H. E. and Simpson, J. E. (1980). The slumping of gravity currents. Journal of
Fluid Mechanics, 99(4):785–799.

Lambert, J. (1992). Numerical methods for Ordinary Differential Systems. John Wiley
and Sons.

Neri, A., Bevilacqua, A., Esposti Ongaro, T., Isaia, R., Aspinall, W. P., Bisson, M.,
Flandoli, F., Baxter, P. J., Bertagnini, A., Iannuzzi, E., Orsucci, S., Pistolesi, M.,
Rosi, M., and Vitale, S. (2015). Quantifying volcanic hazard at Campi Flegrei caldera
(Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps.
Journal of Geophysical Research: Solid Earth, 120(4):2330–2349. 2014JB011776.

Orsucci, S. (2014). Multiphase flow modeling and numerical simulation of pyroclastic
density currents. PhD thesis, Università di Pisa.

Roche, O., Buesch, D. C., and Valentine, G. A. (2016). Slow-moving and far-travelled
dense pyroclastic flows during the Peach Spring super-eruption. Nature Communica-
tions, 7.

Roche, O., Phillips, J. C., and Kelfoun, K. (2013). Pyroclastic density currents. In
Fagents, S. A., Gregg, T. K. P., and Lopes, R. M. C., editors, Modeling Volcanic
Processes: The Physics and Mathematics of Volcanism, pages 203–229. Cambridge
University Press.

Shampine, L. F. (1986). Some Practical Runge-Kutta Formulas. Mathematics of Com-
putation, 46(173):135–150.

Sutherland, W. (1893). LII. The viscosity of gases and molecular force. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223):507–
531.

Woods, A. W. and Bursik, M. I. (1991). Particle fallout, thermal disequilibrium and
volcanic plumes. Bulletin of Volcanology, 53(7):559–570.

23


	Phenomenological aspects of PDCs
	Density currents and PDC regimes

	The box model
	Analytical expression for the maximum current runout

	PDCs invasion maps
	Implementation of the PYroclastic BOX Model in the Python code pybox.py
	Input parameters
	Operations on DEMs
	Numerical integration
	Subroutines for computing physical quantities
	Writing invasion maps
	Visualizing invasion maps


